2024年语言行业市场规模是通过大量的一手调研和覆盖主要行业的数据监测(包括目标产品或行业在指定时间内的产量、产值等,具体根据人口数量、人们的需求、年龄分布、地区的贫富度调查)的基础数据信息,并通过自主研发的多个市场规模和发展前景估算模型,为客户提供可靠地市场和细分市场规模数据以及趋势判断,协助客户判断目标市场规模及发展前景,为市场开发和市场份额估算提供可靠、持续的数据支持。
市场规模不仅仅只是语言产品在某个范围内的市场销售额,也涵盖了是用户量规模或者销售量规模。我们根据语言所集中的区域、发展的阶段、用户数量进行现有市场的估算;其次,再根据语言潜在用户及发展趋势对未来市场进行估算。最终,可获知语言产品市场的总体规模。
在语言市场规模的测算上,我们主要采用了如下几种方法
一、源推算法
即将本行业的市场规模追溯到催生本行业的源行业,通过对源行业数据的解读,推导出语言行业的数据。
二、强相关数据推算法
所谓强相关,可以理解为两个行业的产品的销售有很强的关系,通过与语言行业强相关行业的分析,印证市场规模数据的准确性。
三、需求推算法
即根据语言产品的目标客户的需求出发,来测算目标市场的规模。
四、抽样分析法
即在总体中通过抽样法抽取一定的样本,再根据样本的情况推断总体的情况。抽样方法主要包括:随机抽样、分层抽样、整体抽样、系统抽样和滚雪球抽样等。
五、典型反推法
依据研究团队对于单个品牌(尤其是龙头品牌)的销售额和市场份额的研究,倒推整个行业的规模。
复旦大学教授张奇:认清大语言模型能力边界非常关键(20240925/12:46)
9月25日上午,“解码未来:全球数智趋势”专题论坛在上海浦东成功举办。复旦大学计算机科学技术学院教授张奇以“大语言模型能力边界与发展思考”为题发表了主题演讲。张奇认为,围绕长上下文建模、多任务学习、跨语言迁移性、文本生产能力这些核心能力,与场景做结合,将有巨大的价值。对于未来的大模型,清晰认知它的能力边界非常重要。如果对能力边界有共识,对于未来投资的力度和方向就有很好的把握。但是可能还需要一定的时间,或许一年、两年的时间才能完成确认(认知能力边界)。(每经网)